Search results for "DEATH RECEPTOR"

showing 5 items of 5 documents

Inhibition of DNA methylation sensitizes glioblastoma for tumor necrosis factor-related apoptosis-inducing ligand-mediated destruction.

2005

AbstractLife expectancy of patients affected by glioblastoma multiforme is extremely low. The therapeutic use of tumor necrosis factor–related apoptosis-inducing ligand (TRAIL) has been proposed to treat this disease based on its ability to kill glioma cell lines in vitro and in vivo. Here, we show that, differently from glioma cell lines, glioblastoma multiforme tumors were resistant to TRAIL stimulation because they expressed low levels of caspase-8 and high levels of the death receptor inhibitor PED/PEA-15. Inhibition of methyltransferases by decitabine resulted in considerable up-regulation of TRAIL receptor-1 and caspase-8, down-regulation of PED/PEA-15, inhibition of cell growth, and …

MaleCancer ResearchMethyltransferaseNudeDrug ResistanceApoptosisReceptors Tumor Necrosis FactorTNF-Related Apoptosis-Inducing LigandCASPASE-8 EXPRESSIONMiceNude mouseSIGNALING COMPLEXReceptorsAntineoplastic Combined Chemotherapy ProtocolsTumor Cells CulturedDNA Modification MethylasesIN-VIVOHeterologousCaspase 8CulturedMembrane GlycoproteinsbiologyIntracellular Signaling Peptides and ProteinsMiddle AgedTumor CellsGene Expression Regulation NeoplasticMALIGNANT GLIOMA-CELLSOncologyCaspasesDNA methylationAzacitidineTumor necrosis factor alphaFemalemedicine.drugSignal TransductionAdultBRAIN-TUMORSTransplantation HeterologousCHEMOTHERAPEUTIC-AGENTSDecitabineMice NudeDecitabineDRUG-INDUCED APOPTOSISDEATH RECEPTOR5-AZA-2'-DEOXYCYTIDINEIn vivoSettore MED/04 - PATOLOGIA GENERALEmedicineAnimalsHumansneoplasmsAgedTransplantationNeoplasticCell growthTumor Necrosis Factor-alphaHistocompatibility Antigens Class IDNA Methylationbiology.organism_classificationPhosphoproteinsReceptors TNF-Related Apoptosis-Inducing LigandGene Expression RegulationApoptosisDrug Resistance NeoplasmImmunologyCancer researchNeoplasmAdult; Aged; Animals; Antineoplastic Combined Chemotherapy Protocols; Apoptosis; Apoptosis Regulatory Proteins; Azacitidine; Caspase 8; Caspases; DNA Modification Methylases; Drug Resistance Neoplasm; Female; Glioblastoma; Histocompatibility Antigens Class I; Humans; Intracellular Signaling Peptides and Proteins; Male; Membrane Glycoproteins; Mice; Mice Nude; Middle Aged; Phosphoproteins; Receptors TNF-Related Apoptosis-Inducing Ligand; Receptors Tumor Necrosis Factor; Signal Transduction; TNF-Related Apoptosis-Inducing Ligand; Transplantation Heterologous; Tumor Cells Cultured; Tumor Necrosis Factor-alpha; DNA Methylation; Gene Expression Regulation Neoplastic; Cancer Research; OncologyTumor Necrosis FactorTRAIL-INDUCED APOPTOSISApoptosis Regulatory ProteinsGlioblastomaCancer research
researchProduct

Nanovectorization of TRAIL with single wall carbon nanotubes enhances tumor cell killing

2015

International audience; Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL or Apo2L) is a member of the tumor necrosis factor (TNF) superfamily. This type II transmembrane protein is able to bound specifically to cancer cell receptors (i.e., TRAIL-R1 (or DR4) and TRAIL-R2 (or DR5)) and to induce apoptosis without being toxic for healthy cells. Because membrane-bound TRAIL induces stronger receptor aggregation and apoptosis than soluble TRAIL, we proposed here to vectorize TRAIL using single-walled carbon nanotubes (SWCNTs) to mimic membrane TRAIL. Owing to their exceptional and revolutional properties, carbon nanotubes, especially SWCNTs, are used in a wide range of physical or,…

Materials science[SDV.BIO]Life Sciences [q-bio]/BiotechnologyStereochemistryCarbon nanotubesBioengineeringTRAIL02 engineering and technologyTNF-Related Apoptosis-Inducing Ligand03 medical and health sciencesMicroscopy Electron TransmissionCell Line TumorNeoplasms[SDV.BBM] Life Sciences [q-bio]/Biochemistry Molecular BiologyHumans[CHIM]Chemical SciencesGeneral Materials Science[SDV.BBM]Life Sciences [q-bio]/Biochemistry Molecular BiologyReceptor[ SDV.BBM ] Life Sciences [q-bio]/Biochemistry Molecular BiologyComputingMilieux_MISCELLANEOUS030304 developmental biologyReceptor Aggregation0303 health sciencesNanotubes CarbonMechanical Engineeringnanovector[ SDV.BIO ] Life Sciences [q-bio]/BiotechnologyGeneral Chemistry021001 nanoscience & nanotechnologyCondensed Matter PhysicsnanomedicineTransmembrane protein[SDV.BIO] Life Sciences [q-bio]/BiotechnologyReceptors TNF-Related Apoptosis-Inducing LigandCell cultureApoptosisCancer cellCancer researchcancer therapydeath receptorTumor necrosis factor alphaNanocarriers0210 nano-technology
researchProduct

Role of apoptosis in autoimmunity.

2004

Autoimmune diseases are characterized by the activity of autoreactive lymphocytes that produce antibodies targeting self tissue or organ for destruction. Although the pathogenesis of these diseases is poorly understood, during the past two decades basic research has indicated apoptosis as the pivotal molecular mechanism leading to autoimmunity. Recently cytokines have been invoked in the regulation of the apoptosis-related factors and death receptors in autoimmune target destruction. These research advances have contributed to the identification of mechanisms controlling autoimmunity for defining novel therapeutic strategies.

Multiple SclerosisbiologyImmunologyThyroiditis AutoimmuneApoptosisAutoimmunitymedicine.disease_causeapoptosiGraves DiseaseAutoimmunityAutoimmune DiseasesPathogenesisDiabetes Mellitus Type 1Basic researchApoptosisImmunologybiology.proteinMolecular mechanismmedicineImmunology and AllergyDeath ReceptorsAnimalsHumansAntibodyJournal of clinical immunology
researchProduct

Death receptors as targets in cancer

2013

Anti-tumour therapies based on the use PARAs (pro-apoptotic receptor agonists), including TRAIL (TNF-Related Apoptosis inducing Ligand) or monoclonal antibodies targeting TRAIL-R1 or TRAIL-R2, have been disappointing so far, despite clear evidence of clinical activity and lack of adverse events for the vast majority of these compounds, whether combined or not with conventional or targeted anti-cancer therapies. This brief review aims at discussing the possible reasons for the lack of apparent success of these therapeutic approaches and at providing hints in order to rationally design optimal protocols based on our current understanding of TRAIL signalling regulation or resistance for future…

Pharmacology0303 health sciencesTumor targetingmedicine.drug_classCancerTNF-Related Apoptosis-Inducing LigandBiologyMonoclonal antibodyApoptosis Regulatory ProteinsBioinformaticsmedicine.disease3. Good healthClinical trial03 medical and health sciences0302 clinical medicine030220 oncology & carcinogenesisImmunologymedicineDeath ReceptorsAdverse effect030304 developmental biologyBritish Journal of Pharmacology
researchProduct

Heat shock proteins: essential proteins for apoptosis regulation

2008

Abstract Many different external and intrinsic apoptotic stimuli induce the accumulation in the cells of a set of proteins known as stress or heat shock proteins (HSPs). HSPs are conserved proteins present in both prokaryotes and eukaryotes. These proteins play an essential role as molecular chaperones by assisting the correct folding of nascent and stress-accumulated misfolded proteins, and by preventing their aggregation. HSPs have a protective function, that is they allow the cells to survive to otherwise lethal conditions. Various mechanisms have been proposed to account for the cytoprotective functions of HSPs. Several of these proteins have demonstrated to directly interact with compo…

Programmed cell deathCell signalingReviewsMitochondrionBiologyModels BiologicallysosomesLysosomeHeat shock proteindeath receptorsmedicineAnimalsHumansemerging chemotherapeutic treatmentsHeat-Shock ProteinsCell Deathhaematopoietic malignanciesapoptosiscell signallingCell BiologyMitochondriaNeoplasm ProteinsCell biologymedicine.anatomical_structurecaspasesHematologic Neoplasmsheat shock proteinsMolecular MedicineProtein foldingHSP60Signal transductionMolecular ChaperonesSignal TransductionJournal of Cellular and Molecular Medicine
researchProduct